Quasi-perfect codes in the $\ell_p$ metric

نویسندگان

  • Joao E. Strapasson
  • Grasiele C. Jorge
  • Antonio Campello
  • Sueli I. R. Costa
چکیده

We consider quasi-perfect codes in Z over the `p metric, 2 ≤ p <∞. Through a computational approach, we determine all radii for which there are linear quasi-perfect codes for p = 2 and n = 2, 3. Moreover, we study codes with a certain degree of imperfection, a notion that generalizes the quasi-perfect codes. Numerical results concerning the codes with the smallest degree of imperfection are presented. ———————————————————————keywords:Tilings, Lattices, Quasi-perfect Codes, `p metric

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach towards the Golomb-Welch conjecture

The Golomb-Welch conjecture deals with the existence of perfect eerror correcting Lee codes of word length n, PL(n, e) codes. Although there are many papers on the topic, the conjecture is still far from being solved. In this paper we initiate the study of an invariant connected to abelian groups that enables us to reformulate the conjecture, and then to prove the non-existence of linear PL(n, ...

متن کامل

Quasi-Perfect Lee Codes from Quadratic Curves over Finite Fields

Golomb and Welch conjectured in 1970 that there only exist perfect Lee codes for radius t = 1 or dimension n = 1, 2. It is admitted that the existence and the construction of quasi-perfect Lee codes have to be studied since they are the best alternative to the perfect codes. In this paper we firstly highlight the relationships between subset sums, Cayley graphs, and Lee linear codes and present...

متن کامل

Classification of perfect codes and minimal distances in the Lee metric

Perfect codes and minimal distance of a code have great importance in the study of theory of codes. The perfect codes are classified generally and in particular for the Lee metric. However, there are very few perfect codes in the Lee metric. The Lee metric has nice properties because of its definition over the ring of integers residue modulo q. It is conjectured that there are no perfect codes ...

متن کامل

Quasi-perfect linear codes from plane cubics

We present some recently obtained constructions of linear quasi-perfect codes with small density arising from plane cubic curves.

متن کامل

Perfect codes in the lp metric

We investigate perfect codes in Zn in the `p metric. Upper bounds for the packing radius r of a linear perfect code in terms of the metric parameter p and the dimension n are derived. For p = 2 and n = 2, 3, we determine all radii for which there exist linear perfect codes. The non-existence results for codes in Zn presented here imply non-existence results for codes over finite alphabets Zq, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015